PENERAPAN METODE DATA MINING MARKET BASKET ANALYSIS TERHADAP DATA PENJUALAN PRODUK BUKU DENGAN MENGGUNAKAN ALGORITMA APRIORI DAN FREQUENT PATTERN GROWTH (FP-GROWTH) : STUDI KASUS PERCETAKAN PT. GRAMEDIA

Goldie Gunadi, Dana Indra Sensuse

Abstract


Data mining merupakan proses analisa data untuk menemukan suatu pola dari kumpulan data tersebut. Data mining mampu menganalisa data yang besar menjadi informasi berupa pola yang mempunyai arti bagi pendukung keputusan. Salah satu teknik data mining yang dapat digunakan adalah association data mining atau yang biasa disebut dengan istilah market basket analysis. Market basket didefinisikan sebagai suatu itemset yang dibeli secara bersamaan oleh pelanggan dalam suatu transaksi. Market basket analysis adalah suatu alat yang ampuh untuk pelaksanaan strategi cross-selling. Metode ini dimulai dengan mencari sejumlah frequent itemset dan dilanjutkan dengan pembentukan aturan-aturan asosiasi (association rules). Algoritma Apriori dan frequent pattern growth (FP-growth) adalah dua algoritma yang sangat populer untuk menemukan sejumlah frequent itemset dari data-data transaksi yang tersimpan dalam basis data. Dalam penelitian ini algoritma Apriori dan frequent pattern growth (FP-growth) digunakan untuk membantu menemukan sejumlah aturan asosiasi dari basis data transaksi penjualan produk buku di Percetakan PT. Gramedia, sehingga untuk selanjutnya dapat digunakan sebagai pertimbangan dalam membuat strategi pemasaran dan penjualan yang efektif.

Full Text:

PDF


DOI: https://dx.doi.org/10.36080/telematikamkom.164

Refbacks

  • There are currently no refbacks.


Copyright (c) 2016 TELEMATIKA

Universitas Budi Luhur Jl. Raya Ciledug,Petukangan Utara,Jakarta Selatan 12260 Telp. (021) 5869225, 5853753 ext 227, 228 Fax. (021) 5869225