PENDEKATAN HYBRID PADA SISTEM PERINGKAS TEKS ARTIKEL BERITA BAHASA INGGRIS MENGGUNAKAN NATURAL LANGUAGE PROCESSING
Abstract
Keywords
Full Text:
PDFReferences
H. Bryan et al., “Pemanfaatan Text Summarization Dengan Support Vector Machine Dan K-Nearest Neighbor Pada Analisis Sentimen Untuk Mempermudah Pengguna Membaca Review Game Steam,” J. Infra, vol. 10, no. 1, pp. 31–36, 2022.
Y. J. Kumar, O. S. Goh, H. Basiron, N. H. Choon, and P. C. Suppiah, “A review on automatic text summarization approaches,” J. Comput. Sci., vol. 12, no. 4, pp. 178–190, 2016, doi: 10.3844/jcssp.2016.178.190.
A. Raj, S. E. M, and D. P. S, “A Systematic Survey on Multi-document Text Summarization,” Int. J. Adv. Trends Comput. Sci. Eng., vol. 10, no. 6, pp. 3148–3153, 2021, doi: 10.30534/ijatcse/2021/111062021.
A. N. Ammar and S. Suyanto, “Peringkasan Teks Ekstraktif Menggunakan Binary Firefly Algorithm,” Indo-JC, vol. 5, no. September, pp. 31–42, 2020, doi: 10.21108/indojc.2020.5.2.440.
L. Pertiwi, “Penerapan Algoritma Text Mining, Steaming Dan Texrank Dalam Peringkasan Bahasa Inggris,” Bimasati, vol. 1, no. 3, pp. 100–104, 2022.
D. Suleiman and A. Awajan, “Deep Learning Based Abstractive Text Summarization: Approaches, Datasets, Evaluation Measures, and Challenges,” Math. Probl. Eng., vol. 2020, 2020, doi: 10.1155/2020/9365340.
R. Varma, “SJSU ScholarWorks A Hybrid Approach for Multi-document Text Summarization,” San Jose State University, 2019.
R. Mihalcea and P. Tarau, “TextRank: Bringing order into texts,” Proc. 2004 Conf. Empir. Methods Nat. Lang. Process. EMNLP 2004 - A Meet. SIGDAT, a Spec. Interes. Gr. ACL held conjunction with ACL 2004, vol. 85, pp. 404–411, 2004.
J. Pragantha, Eris, and V. C. M, “Penerapan Algoritma TextRank untuk Automatic Summarization pada Dokumen Berbahasa Indonesia,” Ilmu Tek. dan Komuter, vol. 1, no. 1, pp. 71–78, 2017.
A. Vaswani et al., “Attention is all you need,” Adv. Neural Inf. Process. Syst., vol. 2017-Decem, no. Nips, pp. 5999–6009, 2017.
J. Zhang, Y. Zhao, M. Saleh, and P. J. Liu, “PEGASUS: Pre-Training with extracted gap-sentences for abstractive summarization,” 37th Int. Conf. Mach. Learn. ICML 2020, vol. PartF16814, pp. 11265–11276, 2020.
DOI: https://dx.doi.org/10.36080/telematikamkom.2679
Refbacks
- There are currently no refbacks.
Copyright (c) 2023 Telematika MKOM
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Universitas Budi Luhur Jl. Raya Ciledug,Petukangan Utara,Jakarta Selatan 12260 Telp. (021) 5869225, 5853753 ext 227, 228 Fax. (021) 5869225