Prediksi Jumlah Pasien Sembuh COVID-19 Menggunakan Jaringan Syaraf Tiruan

Giri Sarah Mustika, Utomo Budiyanto, Subandi Subandi

Abstract


Diseases experienced by humans can be sourced from various things such as bacteria, viruses, fungi and others. Serious diseases that have been experienced in the world include MERS, SARS, Ebola, HIV/AIDS and many more. In 2019, the World Health Organization (WHO) received a report about a group of patients with pneumonia of unknown cause from the same city, namely Wuhan, the capital of Central China's Hubei Province, named Corona Virus Disease-19 (COVID-19). This COVID-19 has made all affected countries become overprotective of their communities and regions. The number of people who have tested positive for the virus, recovered and even died is increasing every day. One of the public's questions regarding the number of recovered patients is a question that is waiting for an answer because the addition of cured patients is good news for all levels of society in the world. The problem in this study is how to predict the number of recovered patients. This question can be answered with predictions through existing methods, so the purpose of this study is to utilize a Backpropagation Artificial Neural Network which has high accuracy to predict the number of recovered COVID-19 patients in each country with the learning rate, hidden layer, neurons in hidden layers and epochs. The input values for the Backpropagation Neural Network method are the number of positive patients, the number of patients dying, the number of positive cases per day, and the number of cases dying per day. The architecture used is [4-4-1] which means it consists of 4 input values and 4 neurons in the hidden layer and will produce 1 output value. The amount of data used is 171 countries from January 22, 2020 to June 21, 2020 with a total data of 25,992 and produces an average value of 90.9% accuracy.


Keywords


Backpropagation, Artificial Neural Network, Prediction of the number of recovered patients, Accuration, COVID19

Full Text:

PDF

References


Parwanto, M. L. E. (2020). Virus Corona (2019-nCoV) penyebab COVID-19. Jurnal Biomedika dan Kesehatan, 3(1), 1-2.

Falah, M., Rini, D. P., & Pahendra, I. (2020). Memprediksi Penyakit Kanker Payudara dan Liver menggunakan Algoritma Backpropagation. In Annual Research Seminar (ARS) (Vol. 5, No. 1, pp. 132-135).

Wong, K., Wibawa, A. P., Pakpahan, H. S., Prafanto, A., & Setyadi, H. J. (2019). Prediksi Tingkat Inflasi Dengan Menggunakan Metode Backpropagation Neural Network. Sains, Aplikasi, Komputasi dan Teknologi Informasi, 1(2), 8-13.

Jafaar, I. M., Sahari, A., & Lusiyanti, D. (2019). Prediksi Tingkat Pertumbuhan Ekonomi Provinsi Sulawesi Tengah Menggunakan Metode Backpropagation. Jurnal Ilmiah Matematika dan Terapan, 16(2), 126-134.

Herdianto, 2013, Prediksi Kerusakan Motor Induksi Menggunakan Metode Jaringan Saraf Tiruan Backpropagation. Medan: Universitas Sumatera Utara

Sutojo, T., Mulyanto, E., Suhartono, V., 2010, Kecerdasan Buatan, Yogyakarta: Andi Offset.

Kusumadewi, S., 2004, Membangun Jaringan Syaraf Tiruan Menggunakan Matlab dan excelink. Jogjakarta. Graha Ilmu.

Septiani, W. D. (2017). Komparasi Metode Klasifikasi Data Mining Algoritma C4. 5 Dan Naive Bayes Untuk Prediksi Penyakit Hepatitis. Jurnal Pilar Nusa Mandiri, 13(1), 76-84

Rohman, A., Suhartono, V., & Supriyanto, C. (2017). Penerapan Algoritma C4. 5 Berbasis Adaboost Untuk Prediksi Penyakit Jantung. Cyberku Journal, 13(1), 2-2.

Handayana, F., Rinawati, R., Arisawati, E., & Dewi, L. S. (2017). Prediksi Penyakit Diabetes Menggunakan Naive Bayes Dengan Optimasi Parameter Menggunakan Algoritma Genetika. Konferensi Nasional Ilmu Sosial dan Teknologi, 1(1).

Ekajaya, F., Hidayat, N., & Ananta, M. T. (2018). Diagnosis Penyakit Tht Menggunakan Metode Fuzzy Tsukamoto Berbasis Android. Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer e-ISSN, 2548, 964X.

Musyaffa, N., & Rifai, B. (2018). Model Support Vector Machine Berbasis Particle Swarm Optimization Untuk Prediksi Penyakit Liver. JITK (Jurnal Ilmu Pengetahuan Dan Teknologi Komputer), 3(2), 189-194.

Falah, M., Rini, D. P., & Pahendra, I. (2020). Memprediksi Penyakit Kanker Payudara dan Liver menggunakan Algoritma Backpropagation. In Annual Research Seminar (ARS) (Vol. 5, No. 1, pp. 132-135).

Putra, P. D., & Rini, D. P. (2020). Prediksi Penyakit Jantung dengan Algoritma Klasifikasi. In Annual Research Seminar (ARS) (Vol. 5, No. 1, pp. 95-99).

Budiyanto, U. & Fatimah, T., (2019), “Prediksi Kelulusan Tepat Waktu Mahasiswa Menggunakan Jaringan Syaraf Tiruan,” SEMNASTIK, pp. 152–160




DOI: https://dx.doi.org/10.36080/bit.v18i2.1667

Refbacks

  • There are currently no refbacks.


Copyright (c) 2021 Jurnal BIT (Budi Luhur Information Technology)

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


OFFICE:

FAKULTAS TEKNOLOGI INFORMASI - UNIVERSITAS BUDI LUHUR, Jl. Ciledug Raya, Petukangan Utara, Jakarta Selatan, 12260. DKI Jakarta, Indonesia. Telp: 021-585 3753 Fax: 021-585 3752

Bit (Fakultas Teknologi Informasi Universitas Budi Luhur) by FAKULTAS TEKNOLOGI INFORMASI - UNIVERSITAS BUDI LUHUR is licensed under CC BY-SA 4.0 Creative Commons License

View Bit (Fakultas Teknologi Informasi Universitas Budi Luhur) Satats Web Analytics Made Easy