Sentiment Analysis Of Mental Health Using K-Nearest Neighbors On Social Media Twitter

Mahesworo Langgeng Wicaksono, Rusdah Rusdah, Diwi Apriana

Abstract


Mental health issues are still significant health problems in the modern world. Poor understanding, stigma, and low mental health awareness contribute to efforts to educate people about mental health. The issue of mental health is widely discussed on social media, one of which is Twitter. So it is necessary to analyze sentiment on mental health issues on Twitter. The dataset in this study uses community reviews on May 16, 2022, with the search word "Mental Health." The research method used in this study has several stages, such as processing data using the K-Nearest Neighbors algorithm by comparing the Support Vector Machine classification algorithm and Decision Tree Processing research data using Rapid Miner tools. The conclusion of this study is, based on experimental results with a dataset of 639 positive and 193 negative sentiment reviews. The results of modeling processing using the K-Nearest Neighbors algorithm obtained the best results when using the split data method 70:30 with k value at number 5, producing precision of 60.87% and recall of 44.03%, respectively, and accuracy of 58.39%.

Keywords


sentiment analysis; text mining; k-nearest neighbors; mental health

Full Text:

PDF (Indonesian)

References


Direktorat Promosi Kesehatan dan Pemberdayaan Masyarakat Kementerian Kesehatan Indonesia, “Pengertian Kesehatan Mental,” promkes.kemkes.go.id, 2018. https://promkes.kemkes.go.id/pengertian-kesehatan-mental (accessed Sep. 08, 2022).

M. S. Muli, Perancangan Media Kampanye Sosial Mental Health Berbasis Video Motion Comic Sebagai Upaya Menjaga Kejiwaan Para Remaja Pasca Pandemi Covid-19, No. 8.5.2017. Universitas Dinamika, 2022.

Annisa Dewi Lestari, “Twitter: Obrolan soal Kesehatan Mental Naik Signifikan selama Pandemik,” idntimes.com, 2021. https://www.idntimes.com/news/indonesia/annisa-dewi-lestari/twitter-obrolan-soal-kesehatan-mental-naik-signifikan-selama-pandemik?page=all (accessed Oct. 08, 2022).

A. D. Adhi Putra, “Analisis Sentimen pada Ulasan pengguna Aplikasi Bibit Dan Bareksa dengan Algoritma KNN,” JATISI (Jurnal Tek. Inform. dan Sist. Informasi), vol. 8, no. 2, pp. 636–646, 2021, doi: 10.35957/jatisi.v8i2.962.

D. A. Pangestu, “Analisis Sentimen Terhadap Opini Publik Tentang Kesehatan Mental Selama Pandemi Covid-19 Di Media Sosial Twitter Menggunakan Naive Bayes Classifier Dan Support Vector Machine,” Jur. Stat. Fak. Mat. Dan Ilmu Pengetah. Alam Univ. Islam Indones. Yogyakarta, 2020.

K. Yan, D. Arisandi, P. Studi, S. Informasi, and U. Tarumanagara, “Analisis Sentimen Komentar Netizen Twitter Terhadap Kesehatan Mental Masyarakat Indonesia,” Junral Ilmu Komput. dan Sist. Inf., vol. 10, no. 1, pp. 1–8, 2022, [Online]. Available: https://journal.untar.ac.id/index.php/jiksi/article/view/17865.

R. A. Yunis Femilia Nugraini, Rd. Rohmat Saedudin, “Implementasi Data Mining Dalam Kasus Mental Health Pada Sosial Media Twitter Menggunakan Metode Naive Bayes,” vol. 8, no. 5, pp. 9260–9265, 2021.

S. S. N. Syaidah, Klasifikasi Kualitas Padi Organik Dengan Menggunakan Algoritma C4.5 Di Dinas Ketahanan Pangan, Pertanian Dan Perikanan Kota Sukabumi. 2020.

A. Imron, “Analisis Sentimen Terhadap Tempat Wisata di Kabupaten Rembang Menggunakan Metode Naive Bayes Classifier,” Tek. Inform., pp. 10–13, 2019, [Online]. Available: https://dspace.uii.ac.id/handle/123456789/14268.

S. -, A. Fadlil, and S. -, “Analisis Sentimen Menggunakan Metode Naïve Bayes Classifier Pada Angket Mahasiswa,” Saintekbu, vol. 10, no. 2, pp. 1–9, 2018, doi: 10.32764/saintekbu.v10i2.190.




DOI: https://dx.doi.org/10.36080/bit.v19i2.2042

Refbacks

  • There are currently no refbacks.


Copyright (c) 2022 Bit (Fakultas Teknologi Informasi Universitas Budi Luhur)

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


OFFICE:

FAKULTAS TEKNOLOGI INFORMASI - UNIVERSITAS BUDI LUHUR, Jl. Ciledug Raya, Petukangan Utara, Jakarta Selatan, 12260. DKI Jakarta, Indonesia. Telp: 021-585 3753 Fax: 021-585 3752

Bit (Fakultas Teknologi Informasi Universitas Budi Luhur) by FAKULTAS TEKNOLOGI INFORMASI - UNIVERSITAS BUDI LUHUR is licensed under CC BY-SA 4.0 Creative Commons License

View Bit (Fakultas Teknologi Informasi Universitas Budi Luhur) Satats Web Analytics Made Easy