Application of Random Forest Classifier Algorithm in Indonesian Sign Language System (Sibi) Detection System

Prabandalu Enggar Wiraswendro, Hari Soetanto

Abstract


Sign language is a language that prioritizes body movements and facial expressions as symbols to communicate with each other. Deaf and speech-impaired groups are the main users of sign language. One type of sign language in Indonesia is SIBI (Indonesian Sign Language System). SIBI (Indonesian Sign Language System) is a form of spoken language that is converted into sign language. Sign language is not only used as a means of communication and interaction between deaf and mute people, but also with normal people. However, until now there is still a communication gap between people who are deaf or mute and normal people. Then made a system design that can detect the sign language symbol SIBI (Indonesian Sign Language System). This system is made using the Random Forest Classifier algorithm with the help of MediaPipe Holistic and OpenCV and is made using the Python programming language. In this study, a dataset was created which was limited to 10 (ten) classes of symbols representing words in the SIBI (Indonesian Sign System) with a total of 8734 data lines which were then pre-processed by dividing the dataset into 70% training data and 30% test data. This study contains stages such as making detection, creating datasets, training classification models, and testing. The test is carried out by calculating the accuracy using the Confusion Matrix and then getting the Accuracy rate of 98.6%, Precision of 98.6%, and Recall of 98.66%. With the creation of the SIBI (Indonesian Language Sign System) detection system, it is hoped that it can reduce the gap between people who are deaf or speech impaired and normal people in communicating. Contribute to knowledge about symbol detection in SIBI (Indonesian Sign System) using the Random Forest Classifier algorithm as well as MediaPipe Holistic and OpenCV. As well as preserving and popularizing SIBI (Indonesian Sign System) as a sign language in Indonesia.

Keywords


sign language; indonesian sign language system (sibi); random forest classifier; mediapipe holistic; opencv; confusion matrix

Full Text:

PDF (Indonesian)

References


F. N. Rahmah, “Problematika Anak Tunarungu Dan Cara Mengatasinya,” Quality, vol. 6, no. 1, p. 1, 2018, doi: 10.21043/quality.v6i1.5744.

L. Kurnia, “Kata Kunci: Anak usia dini, interaksi sosial, orangtua, dan tunawicara,” vol. 1, no. 1, pp. 39–54, 2020.

D. Yolanda, K. Gunadi, and E. Setyati, “Pengenalan Alfabet Bahasa Isyarat Tangan Secara Real-Time dengan Menggunakan Metode Convolutional Neural Network dan Recurrent Neural Network,” J. Infra, vol. 8, no. 1, pp. 203–208, 2020, [Online]. Available: https://publication.petra.ac.id/index.php/teknik-informatika/article/view/9791

Z. Zakaria, R. A. Firmanyah, and Y. A. Prabowo, “Rancang bangun Flex Sensor Gloves untuk penerjemah Bahasa Isyarat menggunakan K-Nearest Neighbors,” Semin. Nas. Sains dan Teknol. Terap. VII, pp. 361–366, 2019, [Online]. Available: https://ejurnal.itats.ac.id/sntekpan/article/view/597/400

A. Sri Nugraheni, A. Pratiwi Husain, and H. Unayah, “Optimalisasi Penggunaan Bahasa Isyarat Dengan Sibi Dan Bisindo Pada Mahasiswa Difabel Tunarungu Di Prodi Pgmi Uin Sunan Kalijaga,” Holistika, pp. 28–33, 2021, [Online]. Available: jurnal.umj.ac.id/index.php/holistika

A. U. Zailani, A. Perdananto, Nurjaya, and Sholihin., “Pengenalan Sejak Dini Siswa Smp Tentang Machine Learning Untuk Klasifikasi Gambar Dalam Menghadapi Kommas : Jurnal Pengabdian Kepada Masyarakat,” KOMMAS J. Pengabdi. Kpd. Masy., vol. 1, no. 1, pp. 7–15, 2020, [Online]. Available: http://openjournal.unpam.ac.id/index.php/kommas/article/view/4599

T. A. Dompeipen and M. E. I. Najoan, “Computer Vision Implementation for Detection and Counting the Number of Humans,” J. Tek. Inform., vol. 16, no. 1, pp. 65–76, 2021.

H. Muchtar and R. Apriadi, “Implementasi Pengenalan Wajah Pada Sistem Penguncian Rumah Dengan Metode Template Matching Menggunakan Open Source Computer Vision Library (Opencv),” Resist. (elektRonika kEndali Telekomun. tenaga List. kOmputeR), vol. 2, no. 1, p. 39, 2019, doi: 10.24853/resistor.2.1.39-42.

H. M. Putri, W. Fuadi, T. Informatika, F. Teknik, U. Malikussaleh, and M. Holistic, “Pendeteksian Bahasa Isyarat Indonesia Secara Real-Time Menggunakan Long,” 2022.

V. Sari, F. Firdausi, and Y. Azhar, “Perbandingan Prediksi Kualitas Kopi Arabika dengan Menggunakan Algoritma SGD, Random Forest dan Naive Bayes,” Edumatic J. Pendidik. Inform., vol. 4, no. 2, pp. 1–9, 2020, doi: 10.29408/edumatic.v4i2.2202.

D. Normawati and S. A. Prayogi, “Implementasi Naïve Bayes Classifier Dan Confusion Matrix Pada Analisis Sentimen Berbasis Teks Pada Twitter,” J. Sains Komput. Inform. (J-SAKTI, vol. 5, no. 2, pp. 697–711, 2021.




DOI: https://dx.doi.org/10.36080/bit.v19i2.2043

Refbacks

  • There are currently no refbacks.


Copyright (c) 2022 Bit (Fakultas Teknologi Informasi Universitas Budi Luhur)

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


OFFICE:

FAKULTAS TEKNOLOGI INFORMASI - UNIVERSITAS BUDI LUHUR, Jl. Ciledug Raya, Petukangan Utara, Jakarta Selatan, 12260. DKI Jakarta, Indonesia. Telp: 021-585 3753 Fax: 021-585 3752

Bit (Fakultas Teknologi Informasi Universitas Budi Luhur) by FAKULTAS TEKNOLOGI INFORMASI - UNIVERSITAS BUDI LUHUR is licensed under CC BY-SA 4.0 Creative Commons License

View Bit (Fakultas Teknologi Informasi Universitas Budi Luhur) Satats Web Analytics Made Easy