Improving The Accuracy Of The C4.5 Algorithm Using Particle Swarm Optimization To Predicate Diabetes Patients

I Gusti Bagus Ari Sidi Mantra Arsana, Ridowati Gunawan

Abstract


Diabetes is a disease that occurs due to an increase in blood sugar levels. Increased sugar levels can trigger death because they can cause damage to blood vessels, nerves, and other internal structures. To avoid bad consequences, it is important to predict whether a person has diabetes or not based on the information that each patient has. The method that can be used to predict whether someone has diabetes or not is a classification method. The C4.5 algorithm is one of the classification algorithms that can be used to predict diabetics. Although the C4.5 algorithm can be used to predict, getting a high accuracy value is also an important measurement. One thing that can be done to increase the accuracy value is to select the attribute that most influences a person to have diabetes or not. Feature selection greatly affects the accuracy of the C4.5 algorithm, particle swarm optimization is used as a feature selection method in this study. The purpose of this study is to increase the value of accuracy to predict whether someone has diabetes or not through feature selection using particle swarm optimization. The dataset used is the Pima Indian Diabetes Databases (PIDD) from the University of California Irvine (UCI) Machine Learning Repository. The results of the study show that feature selection using particle swarm optimization before using the C4.5 algorithm can increase accuracy by 6% from the previous accuracy value of 75%. The selected features are 4 attributes out of 9 attributes. The four attributes are Glucose, SkinThickness, BMI, and DiabetesPedigreeFunction. The results of feature selection using particle swarm optimization can increase the accuracy of predictions of whether someone suffering from diabetes or not.

Keywords


prediction; accuracy; diabetes; c4.5 algorithm; fitur selection; particle swarm optimization

Full Text:

PDF (Indonesian)

References


(2021) I. D. Federation, “IDF Diabetes Atlas 2021,” Agustus 2022, 2021. [Online]. Available: https://diabetesatlas.org.

(2022) D. I. Mahadi, “Data Indonesia,” Februari 2022, 2022. [Online]. Available: https://dataindonesia.id/ragam/detail/penderita-diabetes-indonesia-terbesar-kelima-di-dunia. . [Accessed: 20-Feb-2008].

P. G. S. C. Nugraha and G. S. Mahendra, “Explorasi Algoritma C4.5 Dan Forward Feature Selection Untuk Menentukan Debitur Baik Dan Debitur Bermasalah Pada Produk Kredit Tanpa Agunan (Kta),” JST (Jurnal Sains dan Teknol., vol. 9, no. 1, pp. 39–46, 2020, doi: 10.23887/jst-undiksha.v9i1.24627.

E. Sudarto; Sufarnap, “Analisis Seleksi Fitur dengan Menggunakan Klasifikasi C4 . 5 dan Density Based Feature Selection ( DBFS ) dalam Memprediksi Kelulusan Mahasiswa,” in CITISEE 2018 Proceedings, 2018, pp. 53–59.

A. P. Engelbrecht, Computational Intelligence: An Introduction, Second. England: John Wiley & Sons, Ltd., 2007.

T.-S. Park, J.-H. Lee, and B. Choi, “Optimization for Artificial Neural Network with Adaptive inertial weight of particle swarm optimization,” in 2009 8th IEEE International Conference on Cognitive Informatics, 2009, pp. 481–485, doi: 10.1109/COGINF.2009.5250693.

R. Gunawan, E. Winarko, and R. Pulungan, “Performance comparison of inertia weight and acceleration coefficients of BPSO in the context of high-utility itemset mining,” Evol. Intell., no. 0123456789, 2022, doi: 10.1007/s12065-022-00707-0.

A. Puspita, “Prediksi Kelahiran Bayi Secara Prematur Dengan Menggunakan Algoritma C . 45,” J. Tek. Inform. Stmik Antar Bangsa, vol. II, no. 1, pp. 11–16, 2016, doi: https://doi.org/10.51998/jti.v2i1.2.

L. S. Ramdhani, “Penerapan Particle Swarm Optimization (PSO) Untuk Seleksi Atribut Dalam Meningkatkan Akurasi Prediksi Diagnosis Penyakit Hepatitis Dengan Metode Algoritma C4 . 5,” Swabumi, vol. IV, no. 1, pp. 1–15, 2016, doi: 10.31294/swabumi.v4i1.1011.

D. P. Rini and S. Samsuryadi, “Optimasi Bobot Atribut Pada Algoritma C4. 5 Menggunakan Particle Swarm Optimization Untuk Prediksi Gula Darah,” 2020.

I. Yulianti, R. A. Saputra, M. S. Mardiyanto, and A. Rahmawati, “Optimasi Akurasi Algoritma C4.5 Berbasis Particle Swarm Optimization dengan Teknik Bagging pada Prediksi Penyakit Ginjal Kronis,” Techno.Com, vol. 19, no. 4, pp. 411–421, Nov. 2020, doi: 10.33633/tc.v19i4.3579.

(2022) Kaggle.com, “Pima Indian Diabetes Databse,” 2022. [Online]. Available: www.kaggle.com.




DOI: https://dx.doi.org/10.36080/bit.v19i2.2044

Refbacks

  • There are currently no refbacks.


Copyright (c) 2022 Bit (Fakultas Teknologi Informasi Universitas Budi Luhur)

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


OFFICE:

FAKULTAS TEKNOLOGI INFORMASI - UNIVERSITAS BUDI LUHUR, Jl. Ciledug Raya, Petukangan Utara, Jakarta Selatan, 12260. DKI Jakarta, Indonesia. Telp: 021-585 3753 Fax: 021-585 3752

Bit (Fakultas Teknologi Informasi Universitas Budi Luhur) by FAKULTAS TEKNOLOGI INFORMASI - UNIVERSITAS BUDI LUHUR is licensed under CC BY-SA 4.0 Creative Commons License

View Bit (Fakultas Teknologi Informasi Universitas Budi Luhur) Satats Web Analytics Made Easy