Sentiment Analysis Of Lecturer's Learning Based On Student's Criticism Data Using Naive Bayes Method

Noor Ferdyansyah, Achmad Solichin

Abstract


The quality of lecturers' teaching is the main key to the success of education at the University. By having lecturers who can provide good teaching, the seeds of nation-changing students can be created. To get lecturers who meet academic standards, of course, evaluation needs to be done. Therefore, Budi Luhur University always conducts questionnaires containing suggestion criticism forms that can be filled in by students. Completion of the suggestion criticism form is carried out for each group of courses at the end of the semester. Currently, the feedback data has not been used to analyze and evaluate the learning process. Therefore, in this research, sentiment analysis is carried out on the results of criticism suggestions that have been sent by students, to find out whether the criticism suggestions are positive, negative, or neutral. One of the sentiment analysis methods that can be used to solve opinion mining problems is the Naive Bayes Method. Data collected as many as 10,067 in the span of 1 semester, namely the odd semester of the 2021/2022 academic year. This suggestion criticism data is then preprocessed, and classified using the Naive Bayes method, testing is carried out using the Naive Bayes Classifier program which is made in the PHP programming language, then accuracy is obtained with the Naïve Bayes method in testing 60% - 40% getting an accuracy result of 83.92%, then in split data 70% - 30% getting an accuracy result of 83.26%, then for split data results 80% - 20% getting an accuracy result of 81.96%, obtained positive sentiment results as much as 2484, then negative sentiment as much as 152, and neutral sentiment as much as 267. This research aims to get sentiment results which are then expected to be used as a reference to improve the quality of teaching lecturers at the university and further evaluation.

Keywords


sentiment analyst; text mining; naïve bayes classifier; preprocessing; evaluation; budi luhur university

References


S. Wulan, U. Vitandy, A. A. Supianto, and F. Abdurrachman Bachtiar, “Analisis Sentimen Evaluasi Kinerja Dosen menggunakan Term Frequency-Inverse Document Frequency dan Naïve Bayes Classifier,” 2019. [Online]. Available: http://j-ptiik.ub.ac.id Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer. Vol. 3, No. 6, Juni 2019, hlm. 6080-6088. Available at : http://j-ptiik.ub.ac.id

I. Nur, F. Astuti, I. Darmawan, and D. Pramesti, “Analisis Sentimen Pada Data Kuesioner Evaluasi Dosen Oleh Mahasiswa (Edom) Prodi Sistem Informasi Telkom University Menggunakan Algoritma Support Vector Machine Analysis Of Sentiment In The Data Evaluation Of Dosage Students (Edom) Information Systems Telkom University Using The Support Vector Machine Algorithm,” 2020.

B. A. Sevsa, M. Didik, and R. Wahyudi, “Analisis Sentimen pada Indeks Kinerja Dosen Fakultas SAINTEK UIN Sunan Kalijaga Menggunakan Naive Bayes Classifier,” 2019. Jurnal Buana Informatika, Volume 10, Nomor 2, Oktober 2019: 112-123.

S. Thaufik Rizaldi, A. al Khairi, P. “Text Mining Classification Opini Publik Terhadap Provider di Indonesia,” 2021. (Vol. 1, Issue 3). ISSN (Printed) : 2579-7271, ISSN (Online ) : 2579-5406.

C. E. Joergensen Munthe, N. Astuti Hasibuan, and H. Hutabarat, “RESOLUSI: Rekayasa Teknik Informatika dan Informasi Penerapan Algoritma Text Mining Dan TF-RF Dalam Menentukan Promo Produk Pada Marketplace,” Media Online, vol. 2, no. 3, pp. 110–115, 2022, [Online]. Available: https://djournals.com/resolusi

A. Hendra, “Analisis Sentimen Review Halodoc Menggunakan Nai ̈ ve Bayes Classifier,” Mei, 2021. In JISKa (Vol. 6, Issue 2). MEI. ISSN: 2527 –5836 (print), 2528 –0074 (online)

F. V. Sari and A. Wibowo, “Analisis Sentimen Pelanggan Toko Online Jd.Id Menggunakan Metode Naïve Bayes Classifier Berbasis Konversi Ikon Emosi,” Jurnal SIMETRIS, vol. 10, no. 2, 2019. P-ISSN: 2252-4983, E-ISSN: 2549-3108.

A. Y. Permana and D. M. M. Eendi, “Analisis Sentimen pada Teks Opini Penilaian Kinerja Dosen dengan Pendekatan Algoritma KNN,” 2020, Jurnal Ilmiah KOMPUTASI, Volume 19 No : 1, Maret 2020, p-ISSN 1412-9434/e-ISSN 2549-7227. https://doi.org/10.32409/jikstik.19.1.2729

Sunardi, Abdul Fadlil, and Suprianto, “Analisis Sentimen Menggunakan Metode Naïve Bayes Classifier Pada Angket Mahasiswa,” vol. 10, 2018. ISSN Print : 1979-7141 ISSN Online : 2541-1942.

D. Anjas Ramadhan and E. Budi Setiawan, “Analisis Sentimen Program Acara Di Sctv Pada Twitter Menggunakan Metode Naive Bayes Dan Support Vector Machine,” 2019. e-Proceeding of Engineering : Vol.6, No.2 Agustus 2019 ISSN : 2355-9365




DOI: https://doi.org/10.36080/bit.v19i2.2041

Refbacks

  • There are currently no refbacks.


Copyright (c) 2022 Bit (Fakultas Teknologi Informasi Universitas Budi Luhur)

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


OFFICE:

FAKULTAS TEKNOLOGI INFORMASI - UNIVERSITAS BUDI LUHUR, Jl. Ciledug Raya, Petukangan Utara, Jakarta Selatan, 12260. DKI Jakarta, Indonesia. Telp: 021-585 3753 Fax: 021-585 3752

Bit (Fakultas Teknologi Informasi Universitas Budi Luhur) by FAKULTAS TEKNOLOGI INFORMASI - UNIVERSITAS BUDI LUHUR is licensed under CC BY-SA 4.0 Creative Commons License

View Bit (Fakultas Teknologi Informasi Universitas Budi Luhur) Satats Web Analytics Made Easy