Cyberbullying Prediction As Cyber Counseling Tools With Data Mining Classification
Abstract
Keywords
Full Text:
PDFReferences
A. Kumar and N. Sachdeva, “Multi-input integrative learning using deep neural networks and transfer learning for cyberbullying detection in real-time code-mix data,” Multimed. Syst., vol. 2, no. 0123456789, 2020, doi: 10.1007/s00530-020-00672-7.
D. Soni and V. Singh, “See no evil, hear no evil: Audio-visual-textual cyberbullying detection,” in Proceedings of the ACM on Human-Computer Interaction, 2018, vol. 2, no. CSCW, pp. 1–25, doi: 10.1145/3274433.
A. Akhter, K. A. Uzzal, and M. M. A. Polash, “Cyber Bullying Detection and Classification using Multinomial Naïve Bayes and Fuzzy Logic,” Int. J. Math. Sci. Comput., vol. 5, no. 4, pp. 1–12, 2019, doi: 10.5815/ijmsc.2019.04.01.
H. Rosa et al., “Automatic cyberbullying detection: A systematic review,” Comput. Human Behav., vol. 93, no. 3, pp. 333–345, 2019, doi: 10.1016/j.chb.2018.12.021.
H. Gaffney, D. P. Farrington, D. L. Espelage, and M. M. Ttofi, “Are cyberbullying intervention and prevention programs effective? A systematic and meta-analytical review,” Aggress. Violent Behav., vol. 45, no. June, pp. 134–153, 2019, doi: 10.1016/j.avb.2018.07.002.
R. M. Kowalski, S. P. Limber, and A. McCord, “A developmental approach to cyberbullying: Prevalence and protective factors,” Aggress. Violent Behav., vol. 45, no. 2017, pp. 20–32, 2019, doi: 10.1016/j.avb.2018.02.009.
J. Wang, K. Fu, and C. T. Lu, “SOSNet: A Graph Convolutional Network Approach to Fine-Grained Cyberbullying Detection,” Proc. - 2020 IEEE Int. Conf. Big Data, Big Data 2020, vol. 3, no. 12, pp. 1699–1708, 2020, doi: 10.1109/BigData50022.2020.9378065.
A. Bozyiğit, S. Utku, and E. Nasibov, “Cyberbullying detection: Utilizing social media features,” Expert Syst. Appl., vol. 179, no. April, pp. 1–15, 2021, doi: 10.1016/j.eswa.2021.115001.
D. Sultan, A. Suliman, A. Toktarova, B. Omarov, S. Mamikov, and G. Beissenova, “Cyberbullying detection and prevention: Data mining in social media,” in Proceedings of the Confluence 2021: 11th International Conference on Cloud Computing, Data Science and Engineering, 2021, pp. 338–342, doi: 10.1109/Confluence51648.2021.9377077.
M. A. Al-Ajlan and M. Ykhlef, “Optimized Twitter Cyberbullying Detection based on Deep Learning,” in 21st Saudi Computer Society National Computer Conference, NCC 2018, 2018, pp. 1–5, doi: 10.1109/NCG.2018.8593146.
P. S. Raj and G.Silambarasan, “Consumer Behaviour Marketing Analysis Using Data mining Concepts,” Int. J. Comput. Tech., vol. 5, no. 2, pp. 40–43, 2018, [Online]. Available: http://www.ijctjournal.org.
L. Cheng, R. Guo, Y. Silva, D. Hall, and H. Liu, “Hierarchical attention networks for cyberbullying detection on the instagram social network,” in SIAM International Conference on Data Mining, SDM 2019, 2019, pp. 235–243, doi: 10.1137/1.9781611975673.27.
C. Iwendi, G. Srivastava, S. Khan, and P. K. R. Maddikunta, “Cyberbullying detection solutions based on deep learning architectures,” Multimed. Syst., vol. 3, no. 23, pp. 1–15, 2020, doi: 10.1007/s00530-020-00701-5.
R. Zhu, W. Guo, and X. Gong, “Short-term photovoltaic power output prediction based on k-fold cross-validation and an ensemble model,” Energies, vol. 12, no. 7, 2019, doi: 10.3390/en12071220.
Z. Y. Algamal, “Shrinkage parameter selection via modified cross-validation approach for ridge regression model,” Commun. Stat. Simul. Comput., vol. 49, no. 7, pp. 1922–1930, 2020, doi: 10.1080/03610918.2018.1508704.
Q. C. Song, C. Tang, and S. Wee, “Making Sense of Model Generalizability: A Tutorial on Cross-Validation in R and Shiny,” Adv. Methods Pract. Psychol. Sci., vol. 4, no. 1, 2021, doi: 10.1177/2515245920947067.
DOI: https://dx.doi.org/10.36080/bit.v19i1.1789
Refbacks
- There are currently no refbacks.
Copyright (c) 2022 Jurnal Bit (Budi Luhur Information Technology)
This work is licensed under a Creative Commons Attribution 4.0 International License.
OFFICE:
FAKULTAS TEKNOLOGI INFORMASI - UNIVERSITAS BUDI LUHUR, Jl. Ciledug Raya, Petukangan Utara, Jakarta Selatan, 12260. DKI Jakarta, Indonesia. Telp: 021-585 3753 Fax: 021-585 3752
Bit (Fakultas Teknologi Informasi Universitas Budi Luhur) by FAKULTAS TEKNOLOGI INFORMASI - UNIVERSITAS BUDI LUHUR is licensed under CC BY-SA 4.0
View Bit (Fakultas Teknologi Informasi Universitas Budi Luhur) Satats